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Abstract. We present a fractal model for a rough interface between an electrode and an 
electrolyte. We calculate that the complex surface impedance is Z = K ( Z O j P  where Z, is 
the impedance of a flat interface. If the fractal dimension, d , ,  of the boundary is written 
as 2+S,  where 8 is small, then, to first order in S .  p = 1-28. For a purely capacitive 
interface, Z ,  = l/iwC, this gives an anomalous power-law frequency dependence as seen 
experimentally by Bottelberghs and Broers and by Armstrong and Burnham. We explicitly 
calculate the prefactor K and the range of frequency for which this law is observed in 
terms of the range of lengths over which the interface is rough. 

1. Introduction 

We shall first consider a flat metal electrode in contact with an electrolyte. Free ions 
in the electrolyte can produce a current and oxidation and reduction of the species, 
as well as the electronic current, allows some charge to be transferred across the surface. 
If a voltage is applied, a net charge builds up  near the interface to screen the potential. 
The width of this polarised region is given by the Debye length [ 11, A D ,  A b2 = ne’/ kTq , ,  
where n is the ionic concentration. Typically the Debye length is several Angstroms 
(see, for instance, [2])+. Outside this layer, the current in the electrolyte can be 
modelled by the equivalent circuit of a surface impedance, Z, ,  in series with a bulk 
electrolyte impedance, Z,. If the charge transfer current is small, then 2, is a capacit- 
ance, while Z, is a resistance. The capacitance per unit area is E O / A D  and so can be 
very large. However, for Z, to behave like a linear circuit element, we require the 
potential across the boundary to be less than k T / q ,  where q is the ionic charge. In 
our analysis we shall assume that the current density is small, that outside the Debye 
layer the ionic concentration is constant and that the surface layer does behave like a 
linear circuit element, independent of the direction of the potential difference. This 
means that we have ignored corrections from the detailed chemistry of the interface, 
the convection of the ions and the electrical anisotropy of some single crystal solid 
electrolytes. We can then write the impedance of the system as 

Z ( w )  = Z e +  l/iwC. 

However, d e  Levie [4], Bottelburghs and Broers [ 5 ] ,  Armstrong and  Burnham [ 6 ] ,  
and Bates et a1 [7] discovered an anomalous frequency dependence if the contact 

* For example, the Debye length of p alumina, discussed later in this paper, is less than an atomic diameter 
[31. 
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between the electrode and a solid electrolyte? was rough. They obtained an impedance: 

Z ( w )  = Z,+  K ( l / i w C ) P  ( 2 )  

where O < p s  1. 
This constant phase angle dependence was found to hold in many systems for up 

to five decades of frequency, with p varying from 0.39 to 0.98. Armstrong and Burnham 
[6] realised that this was due to the roughness of the boundary and that p would 
depend on its geometry. They measured the impedance of p alumina in contact with 
a gold electrode. They found that p decreased as the electrode became rougher. When 
it was polished, p approached 1. Since a power-law impedance is observed, it was 
reasonable to suggest that this could be derived from a self-similar boundary with p 
related to the fractal dimension. This was done by Liu [ l l ]  and extended by Kaplan 
and Gray [12], who described the contact as an arrangement of parallel grooves. 
Halsey [ 131 has also recently looked at the problem and it was his study that prompted 
the present work. He considered the interface as a supposition of mountains and 
valleys of different sizes. 

We use a fractal model of the interface from which the law (2) emerges naturally 
as part of a renormalisation flow diagram. The method used could be applied to a 
variety of other problems with a fractal boundary condition$. We uncover a richer 
behaviour than that found previously. 

2. Calculations 

Consider now a crinkled boundary between the electrolyte and the electrode, where 
the size of the crinkles is greater than the screening length. See figure 1. In the 
electrolyte, beyond the polarised layer of charge, 0’4 = 0, where 4 is the electrostatic 
potential. On the boundary of this layer, the normal current density is j ,  = ua4/an, 
where U is the electrolyte conductivity and &$/an is the electric field normal to the 
surface. j ,  is also equal to C$/z,, where z ,  is the surface impedance for unit area. This 
gives us the surface boundary condition 

u a 4 / a n  = C$/zs, (3) 
First we shall do the calculation in two dimensions. Then z ,  is the impedance for 

unit length and u has the dimensions of (resistance)-’. For a flat electrode of width 
L,, the total impedance for an electrolyte of length L,  is simply L, / (  Lxu) + Z ,  with 
Z, = z , /  L,. Remember that we have added the impedance z ,  in parallel across the 
interface to find 2,. 

We now slightly buckle the electrode such that the double layer of charge lies along 
the curve y = a cos( k x ) ,  where ak  = E << 1, but a > A D .  We call the wavelength of this 
perturbation A,,, . We now solve Laplace’s equation in the electrolyte with the boundary 
condition (3) on the curve and where the electric field, a4 /ay ,  is constant for large y. 
We further assume that Z, << Z,, i.e. most of the impedance is carried by the electrolyte. 
We can find an analytic solution for 4 as a power series in E ,  the dimensionless 
amplitude of the buckling. The plate now has a slightly longer length and so we should 

+ A description of the theory and  applications of solid electrolytes is given in [ 8 , 9 ]  while [ lo ]  is particularly 
useful. 
% The authors have used the same fractal model to describe the velocity distribution at the fluid boundary 
i n  viscous fingering [14]. 
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Figure 1. Diagram explaining the equations and  boundary conditions used to calculate the 
interfacial impedance of an electrode in contact with an electrolyte. The layer of charge 
is much thinner compared with L ,  than shown in the diagram. There is another identical 
interface at  the other electrode. 

expect to find an increase in the capacitance as well as a small alteration of the overall 
resistance, because of the variation in height. Working to O(e ' )  we obtain 

R 2 i - R + 2  z: = z,-- 
:a?( R + 1  )' (4) 

Z, is the surface impedance of the flat plate and R = kaz,. R is a dimensionless 
comparison of the surface and electrolyte impedances. 

We model a fractal interface by considering a sequence of bucklings [ 141. Imagine 
that the plate is further crinkled by another wave of arbitrary phase with respect to 
the first, with a larger wavelength, mA,,,,( m > 11, but the same dimensionless amplitude 
E (figure 2). This is not the simple addition of two waves; the original sinusoidal 
perturbation is perpendicular to the second. We continue this process for a large 
number, N, of bucklings until we reach A,,, = m 'A,,,,. Here A,,, represents the size 
of the largest roughenings on the boundary. The boundary is self-similar. This process 
may be regarded as a smooth but statistical adaptation of the Koch curve construction 
[15].  Two fully developed curves are shown in figure 3. We measure the fractal 
dimension d f  by considering the increase in apparent arc length at each change of 
scale [ 1 SI: 

d r =  1 + ~ ~ / 4 l o g  m-3E4/6410g m + O ( e 6 ) .  ( 5 )  

We now calculate the interfacial impedance of this structure. That is, what is the 
surface impedance of the fractal boundary if the impedance per unit length is :,? 

For the first buckling, the electric field is roughly constant beyond a distance 1/ k 
from the interface. Consequently, on scales much larger than this we can consider the 
system to be equivalent to a flat plate with an effective impedance per unit length, ::, 
such that z : /  L ,  = Z: in (4). If m >> 1, the second buckling will be much larger than 
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F l a t  p late 

Stage 1 

Stage 2 

Figure 2. The first two stages in the generation of the model fractal. We would calculate 
the impedance of stage 2, for instance, by considering the smaller scale crinkles smoothed 
out, but with a modified impedance per unit  length obtained from equation ( 6 ) .  Repeating 
this many times would give the impedance of a multiply-buckled interface. 

Figure 3. The interface after many stages of buckling. ( a  j m = 5 ,  E = 0.8 and d ,  = 1.09. ( b  j 
m = 3, E = 0.8, d , =  1.13. The large value of E is chosen so that the discrete stages of 
buckling can be clearly seen. See also [ 141. 

the first. We can consequently find the impedance of the doubly crinkled interface 
from (4), but with zs replaced with the z :  calculated from the first stage. Repeating 
this procedure enables us to calculate the impedance for the fully crinkled system. We 
obtain a recursion relation. For the nth buckling of wavenumber k, = m - " k :  

&'Lr R 2 + R + 2  
~ I C " (  R + l  ) 2: = z;-' -- 

where now R = k,uz:-' and Z :  = z ; / L , .  
Any self-similar structure can be thought to be built up  from the same pattern 

repeated on many scales. However, a complete description of any given boundary 
would be extremely difficult. We have only been able to solve the problem for small 
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perturbations well separated in length. Each buckling makes a small fractional change 
to the surface impedance, but the total change after many bucklings can be very large. 
Despite the simplicity of the model, the calculation reveals a rich behaviour. Equation 
( 6 )  not only alters the modulus, but also the argument of 2:. Consequently z ,  may 
be imaginary, but the final impedance need not be so. 

Equation ( 6 )  gives the small change in 2: each time n increases by 1 .  We write 
x = log(A,/Ami,) and consider this a continuous function. Hence we can write 

where we have written ~ ~ / 4  log m as S and  6 < 1. 
This can be arranged to give a differential equation for R 

"=-a( R 2 + R + 2  1 - R .  
ax R + l  

( 7 )  

This is easily integrated using the initial condition that, when x = 0, R = Ro = 
2mrz , /Amin .  We obtain 

where r + = - 2 S + 0 ( 6 2 )  and r - = - 1 + 2 6 + 0 ( 6 ' ) .  
A flow diagram showing the behaviour of R for different values of Ro is shown in 

figure 4. As we include more and more bucklings, the flow tends towards a fixed point 
at r+ which is negative and  real; hence the fully crinkled interface makes a small 
negative correction, Z* = --EAmax/ TuL,, to the overall resistance of the electrolyte. 
The quantity R - r ,  is of some interest. If IRol >> 1 ,  which will almost always be the 
case for small Ami,  and low frequency impedance measurements, we have 

Thus the interfacial impedance is 
Z," = Z* + K (Zs)p ( 1 1 )  

where K = [ A m l n A m a x / ( 2 ~ u L , ) 2 ] 6  and p =  1 - 2 6 + 0 ( 6 * ) .  
Remember also that d f =  1 + 6 + 0 ( 6 2 )  from ( 5 ) .  If Z,= l / iwCo, we obtain ( 2 ) .  

Notice though that our analysis gives the impedance for any combination of circuit 
elements. In particular, Ro could contain a contribution from an  electronic charge 
transfer resistance or a reactive component to the electrolyte conductivity. The total 
impedance of the system still includes Z,, from the electrolyte. Usually Z, is a resistance 
and  so does not affect the overall frequency dependence. The conductivity of the 
medium, U, only alters the prefactor K. If the surface impedance for a Bat electrode 
is negligible (i.e. 2, is very small), then the anomalous power-law behaviour may not 
be detectible. The only change in the impedance for the fractal boundary will then 
be from Z * ,  which is real. 

The model is easily extended to three dimensions by using bucklings of the form 
y = a cos(k - r ) .  If all the k, are parallel, this models a set of parallel undulations, but 
a criss-crossing system is generated if each k has a random orientation. We arrive at 
the same value of p ,  but now d f  = 2 + 6. This is different from the work of Liu [ l l ] ,  
who found p = 1 - ( d f -  d + l ) ,  where d is the space dimension. To order 6, we have 
p = 1 - 2 ( d f -  d + 1 ) .  However, it must be emphasised that p need not be a function of 
d f  only. For a real self-similar boundary, the fractal dimension is a statistical property 
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Figure4. Flow diagram showing the behaviour of R, which is proportional to the interfacial 
impedance. The diagram is symmetrical about the real axis. The bold arrows indicate the 
singularity in a R / d x  at - 1 .  The small arrows indicate how the flow moves towards the 
fixed point at r+ as we consider more bucklings. I f  the interfacial impedance per unit 
length is a pure capacitance and the electrolyte conductivity is real, we follow the flow 
starting on the imaginary axis. Other combinations of circuit elements start at other points 
on a circle of large IRI. If the flow line makes an angle 0 to the real axis at large lRI, then 
it approaches r+ at an angle pa. 

dependent on its geometry. Other exponents, such as p ,  which involve the surface as 
a boundary condition in a physical system, will be derived from other statistical 
properties of the coordinates that describe the surface. Not only does this mean, in 
this instance, that p is not the same as df, but that, in general, no exact relation can 
be found between them. We illustrate this here by repeating the two-dimensional 
calculation to 0(S2) .  After a lot of algebra, we obtain p = 1 - 26 -is2 log m with rc, 
the fixed point, at -26 +2S2(log m - 1) and df= 1 + 6 -as2 log m. To describe the 
physics we need two independent parameters, 6 and m (or E and m). Of course, as 6 
is small, p and df are approximately related, but a full theory would involve an infinite 
set of such parameters and different statistical properties of these would be involved 
in the description of different scaling relations. 

We also performed the analysis for a fully three-dimensional system of crinkles of 
the form y = a cos(ku) cos(kz + cp),  where the flat plate lies in the xz plane. This 
produces a square grid of sinusoidal humps. Again p = 1 - 26 + O( and df = 2 + 6, 
but r+ = -&!S. 
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The range of frequency for which this power-law or constant phase angle (CPA)  

regime is observed tells us the range of lengths over which the surface is rough. From 
now on we shall take Ro to be imaginary, so we say that the flat polarised layer is a 
capacitance. The analysis though can still be performed for any set of circuit elements. 
In the high frequency limit lRol is not large, but the flow lines still end up near the 
fixed point. We find that Z,” = Z‘+ l/iwC,. We have normal capacitive behaviour. 
If C is the capacitance of the flat interface, C, is larger and given by: C,= 
C(A,,x/A,,,)S and Z‘ = Z* [ 1 - (Am,n/Amax)6]. The C P A  law is valid if 2rruL,/wCA,,,~ 
1. 

For extremely low frequencies, the flow never gets near the fixed point and Z,” = 
l / i w C o .  Again CO= C(Amax/Am~n)6. Notice that CO, C, >> C. The CPA law is valid for 
oCAm,,/2rruL, 3 ( A m l n / A m a x ) ’ T 6 .  This tells us that the range of frequencies obeying 
the power-law behaviour is: 

3. Conclusions 

Bottelberghs and Broers [ 5 ]  looked at the solid electrolyte Na,WO,-Na,MnO, and 
measured its interfacial impedance in contact with polished Pt and  painted Pt electrodes. 
Armstrong and Burnham [6] did the same with sintered discs and single crystals of P 
alumina with gold electrodes. They roughened the alumina by polishing with diamond 
tips of varying size and  took electron micrographs of the electrode which coated the 
electrolyte surface. Bates et a1 [ 7 ]  also studied ,6 alumina. In all the experiments the 
electrolyte impedance, Z,, was larger in magnitude than the surface impedance, 2,. 
However, Z, was a pure resistance and hence Z, was the only frequency-dependent 
contribution to the overall impedance. CPA behaviour was found for the polished Pt 
electrodes and  the sintered discs of P alumina. Our analysis would be inapplicable 
to the single crystal as its conductivity is highly anisotropic, but should give some 
indication of the geometry of the other samples, particularly where p is close to 1 and  
hence S is very small. From the range of frequencies for which the anomalous behaviour 
is seen, as well as the values of p,  we calculate that A m a x / A m i n  is roughly 1000 for the 
painted Pt system and  between about 10 and 50 for the sintered disc/gold experiment 
of Armstrong and  Burnham. For the former case we have p = 0.64 and hence d f =  2.18, 
while for the latter case we have p = 0.39-0.99 and hence d f  = 2.3 1-2.00. We have used 

From the electron micrographs, the boundary of the gold electrodes is flat above 
a few k m .  Below these scales we see criss-crossing grooves for the single crystals and  
pits and bumps for the sintered discs. Given the approximations of this model and 
the complications in the experimental set-up, there is little purpose pursuing the 
predictions of the theory much further. However, it would be interesting to repeat 
similar experiments where the surface was known to be fractal and its dimension could 
be measured independently. 

We have presented a simple, yet powerful theory that gives a physical understanding 
of the anomalous impedance of a fractal surface. It allows us to provide a crude 
estimate of the degree of surface roughening and  its scale in the experiments. Moreover, 
the method of calculation could be extended to describe other fractal systems. 

d f =  2 + S .  



204 R Ball and M Blunt 

Acknowledgments 

RCB is very grateful for discussions with T C Halsey. MJB acknowledges a CASE 
studentship from the SERC and British Petroleum plc. 

References 

[ I ]  Lifshitz E M and Pitaevskii L P 1981 Physicai Kinetics (Oxford: Pergamon) 
[2] Vashishta P, Mundy J N and Shenoy G K (ed)  1979 Fast Ion Transport in Solids (Amsterdam: 

[3] Armstrong R D 1986 private communication 
[4] de Levie 1965 Electrochim. Acta 10 113 
[5] Bottelberghs P H and Broers G H J 1976 J. Electroanal. Chem. 67 155 
[6] Armstrong R D and Burnham R A 1976 J. Electroand. Chem. 7 2  257 
[7] Bates J B, Wang J C and Chu Y T 1986 Solid State Ionics 18/19 1045 
[8] Subbarao E C (ed) 1980 Solid Elecfrolytes and Their Applicafions (New York: Plenum) 
[9] Hagenmuller P and Van Goo1 W (ed)  1978 Solid Electrolytes (New York: Academic) 

North-Holland) 

[IO] Bottelberghs P H 1978 Solid Electrolytes ed P Hagenmuller and W Van Goo1 (New York: Academic) 

[ l l ]  Liu S H 1985 Phys. Reo. Left .  55 529 
[12] Kaplan T and Gray L J 1985 Phys. Reo. B 32 7360 
[13] Halsey T C 1987 Phys. Reu. A 35 3512 
[14] Blunt M J and Ball R C 1987 J. Phys. A :  Math. Gen. 20 5961 
[15] Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman) 

ch 10 


